A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5026321DOI Listing

Publication Analysis

Top Keywords

signal
10
signal generator
8
direct digital
8
rf-fm signal
8
voltage-controlled time
8
time delay
8
reference signal
8
sine wave
8
frequencies ranging
8
synchronous radio-frequency
4

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!