Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.009866DOI Listing

Publication Analysis

Top Keywords

scattering medium
8
fluorescence microscopy
8
optical memory
8
fluorescent objects
8
wide field
4
fluorescence
4
field fluorescence
4
fluorescence epi-microscopy
4
epi-microscopy scattering
4
medium enabled
4

Similar Publications

To compare 1D (linear) tumor volume calculations and classification systems with 3D-segmented volumetric analysis (SVA), focusing specifically on their effectiveness in the evaluation and management of NF2-associated vestibular schwannomas (VS). VS were clinically followed every 6 months with cranial, thin-sliced (< 3 mm) MRI. We retrospectively reviewed and used T1-weighted post-contrast enhanced (gadolinium) images for both SVA and linear measurements.

View Article and Find Full Text PDF

Functionalization of Graphene by Interfacial Engineering in Thermally Conductive Nanofibrillated Cellulose Films.

Langmuir

January 2025

Research Center of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai 200444, P. R. China.

Flexible nanocomposites incorporating nanofibrillated cellulose (NFC) hold significant promise for thermal management applications. However, their heat dissipation performance is primarily constrained by the interfacial thermal resistance (). In this work, 1-pyrenemethylamine hydrochloride (PyNH) noncovalent functionalized graphene subsequently self-assembled with NFC through a vacuum-assisted filtration technique.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.

View Article and Find Full Text PDF

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!