Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.008503 | DOI Listing |
Appl Spectrosc
April 2023
Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA.
A tunable diode laser absorption spectroscopy (TDLAS) device has been developed to study long-path atmospheric transmission near diode pumped alkali laser (DPAL) emission wavelengths. By employing a single aperture and retro reflector in a mono-static configuration, the noise associated with atmospheric and platform jitter were reduced by a factor of ∼30 and the open-air path length was extended to 4.4 km and over a very broad spectral range, up to 120 cm.
View Article and Find Full Text PDFThe alkali atom concentration plays an important role in the performance of a diode pumped alkali vapor laser (DPAL). At the rubidium DPAL operational region, the alkali concentration is as high as 10-10, which is "optically thick," or opaque, for the 780 nm or 795 nm doublet D lines when the traditional scanning absorption spectrum method is used for concentration measurement. To solve this problem, we propose the use of a probe laser of 420 nm, which corresponds to the 5 to 6 transition and has a lower absorption cross section compared to the D-line doublet.
View Article and Find Full Text PDFDiode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique.
View Article and Find Full Text PDFAlthough the diode pumped alkali laser (DPAL) works in a three-level scheme, higher energy-state excitation and ionization processes exist during operation, which may lead to deleterious effects on laser performance. In this paper, we report the ionization degree measurement in the gain medium of an operational hydrocarbon-free Rb DPAL by using the optogalvanic method. The results show that, at the pulsed mode with a duration of ~1 ms, a maximal ionization degree of ~0.
View Article and Find Full Text PDFIn this paper, we first propose and demonstrate a novel tracing atom based absorption spectroscopy method for the real-time measurement of the temperature rise inside the pump region of a pulsed diode pumped alkali laser (DPAL). By artificially adding potassium atoms into the gain medium of an operational rubidium laser, the information of the temperature rise can be obtained from the variation of the potassium absorption signal. Some important influencing factors are studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!