Electrochemotherapy became one of the therapeutic protocols successfully used in oncology. However, biological effects occurring in cells, especially those which are drug resistant, have not been studied thoroughly. This study presents response of wild and drug resistant breast cancer cells to classical photodynamic therapy with Photofrin or experimental photodynamic therapy with cyanine IR-775, combined with electroporation. Photodynamic reaction or electroporation alone had no cytotoxic effect, but their combination significantly disturbed cellular functions. Applying electroporation allowed the drugs to increase its accumulation, especially for a poorly permeant cyanine in drug resistant cells. FACS analysis showed that even at relatively mild electric field, ca. 90% of cells were permeabilized. High intracellular concentration of drugs triggered the cellular defense system through increased expression of glutathione S-transferase and multidrug resistance proteins (MDR1 and MRP7), particularly in drug resistant cells. Finally, expressively decreased cell metabolism and proliferation, as well as formation of apoptotic bodies and fragmentation of cells were observed after the combined treatment. The results show that electroporation can be used for effective delivery of photosensitizers, even to drug resistant breast cancer cells, which was not tested before. This shows that electro-photodynamic treatment could be a promising approach to overcome a problem of drug resistance in cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2018.04.008 | DOI Listing |
J Chem Inf Model
January 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.
View Article and Find Full Text PDFPLoS One
January 2025
Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
Topological indices are crucial tools for predicting the physicochemical and biological features of different drugs. They are numerical values obtained from the structure of chemical molecules. These indices, particularly the degree-based TIs are a useful tools for evaluating the connection between a compound's structure and its attributes.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.
This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cell Biology, Third Military Medical University, Chongqing, China.
The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!