Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.577DOI Listing

Publication Analysis

Top Keywords

selenophosphate synthesis
12
catalytic domain
12
inhibition cell
12
sephs1
9
selenophosphate synthetase
8
redox homeostasis
8
sephs1 sephs2
8
second step
8
sephs1 mrna
8
leads inhibition
8

Similar Publications

PRDX6 contributes to selenocysteine metabolism and ferroptosis resistance.

Mol Cell

December 2024

Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany. Electronic address:

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (HSePO), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY.

View Article and Find Full Text PDF

exploits xanthine and uric acid as nutrients by utilizing a selenium-dependent catabolic pathway.

Microbiol Spectr

October 2024

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into "selenoproteins" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen.

View Article and Find Full Text PDF

Selenophosphate PbPSe Single Crystals Growth by Chemical Vapor Transport (CVT) Method for Radiation Detection.

Chemphyschem

October 2024

State Key Laboratory of Solidification Processing & Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

The heavy metal selenophosphate PbPSe emerges as a promising room-temperature X-ray/γ-ray detectors due to its high resistivity, robust radiation-blocking capability, and outstanding carrier mobility-lifetime product, etc. However, the high activity of phosphides poses significant impediment to the synthesis and single crystal growth. In this work, we have prepared high-quality PbPSe single crystals with using the chemical vapor transport (CVT) method.

View Article and Find Full Text PDF

SEPHS1 Gene: A new master key for neurodevelopmental disorders.

Clin Chim Acta

August 2024

Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China. Electronic address:

The SEPHS1 (Selenophosphate Synthetase 1) gene encodes a critical enzyme for synthesizing selenophosphate, the active donor of selenium (Se) necessary for selenoprotein biosynthesis. Selenoproteins are vital for antioxidant defense, thyroid hormone metabolism, and cellular homeostasis. Mutations in SEPHS1 gene, are associated with neurodevelopmental disorders with developmental delay, poor growth, hypotonia, and dysmorphic features.

View Article and Find Full Text PDF

Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery.

ISME J

January 2024

Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China.

Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!