A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting vasovagal syncope from heart rate and blood pressure: A prospective study in 140 subjects. | LitMetric

Predicting vasovagal syncope from heart rate and blood pressure: A prospective study in 140 subjects.

Heart Rhythm

Imperial Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom; National Heart & Lung Institute, Imperial College, London, United Kingdom.

Published: September 2018

Background: We developed a vasovagal syncope (VVS) prediction algorithm for use during head-up tilt with simultaneous analysis of heart rate (HR) and systolic blood pressure (SBP). We previously tested this algorithm retrospectively in 1155 subjects, showing sensitivity 95%, specificity 93%, and median prediction time 59 seconds.

Objective: The purpose of this prospective, single-center study of 140 subjects was to evaluate this VVS prediction algorithm and to assess whether retrospective results were reproduced and clinically relevant. The primary endpoint was VVS prediction: sensitivity and specificity >80%.

Methods: In subjects referred for 60° head-up tilt (Italian protocol), noninvasive HR and SBP were supplied to the VVS prediction algorithm: simultaneous analysis of RR intervals, SBP trends, and their variability represented by low-frequency power-generated cumulative risk, which was compared with a predetermined VVS risk threshold. When cumulative risk exceeded threshold, an alert was generated. Prediction time was duration between first alert and syncope.

Results: Of the 140 subjects enrolled, data were usable for 134. Of 83 tilt-positive subjects (61.9%), 81 VVS events were correctly predicted by the algorithm, and of 51 tilt-negative subjects (38.1%), 45 were correctly identified as negative by the algorithm. Resulting algorithm performance was sensitivity 97.6% and specificity 88.2%, meeting the primary endpoint. Mean VVS prediction time was 2 minutes 26 seconds ± 3 minutes 16 seconds (median 1 minute 25 seconds). Using only HR and HR variability (without SBP), mean prediction time reduced to 1 minute 34 seconds ± 1 minute 45 seconds (median 1 minute 13 seconds).

Conclusion: The VVS prediction algorithm is a clinically relevant tool and could offer applications, including providing a patient alarm, shortening tilt-test time, and triggering pacing intervention in implantable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2018.04.032DOI Listing

Publication Analysis

Top Keywords

vvs prediction
24
prediction algorithm
16
prediction time
16
140 subjects
12
minute seconds
12
prediction
9
vasovagal syncope
8
heart rate
8
blood pressure
8
study 140
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!