B cell MHC class II signaling: A story of life and death.

Hum Immunol

Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States. Electronic address:

Published: January 2019

MHC class II regulates B cell activation, proliferation, and differentiation during cognate B cell-T cell interaction. This is, in part, due to the MHC class II signaling in B cells. Activation of MHC Class II in human B cells or "primed" murine B cells leads to tyrosine phosphorylation, calcium mobilization, AKT, ERK, JNK activation. In addition, crosslinking MHC class II with monoclonal Abs kill malignant human B cells. Several humanized anti-HLA-DR/MHC class II monoclonal Abs entered clinical trials for lymphoma/leukemia and MHC class II-expressing melanomas. Mechanistically, MHC class II is associated with a wealth of transmembrane proteins including the B cell-specific signaling proteins CD79a/b, CD19 and a group of four-transmembrane proteins including tetraspanins and the apoptotic protein MPYS/STING. Furthermore, MHC class II signals are compartmentalized in the tetraspanin-enriched microdomains. In this review, we discuss our current understanding of MHC class II signaling in B cells focusing on its physiological significance and the therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207480PMC
http://dx.doi.org/10.1016/j.humimm.2018.04.013DOI Listing

Publication Analysis

Top Keywords

mhc class
36
class signaling
12
class
10
mhc
8
signaling cells
8
human cells
8
class monoclonal
8
monoclonal abs
8
proteins including
8
cells
5

Similar Publications

Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials.

Biomaterials

January 2025

Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!