PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier.

Dev Comp Immunol

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:

Published: September 2018

Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2018.04.021DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
gut
9
rfpgrp-lb
9
maintaining gut-microbe
8
gut-microbe symbiosis
8
symbiosis red
8
red palm
8
palm weevil
8
rhynchophorus ferrugineus
8
ferrugineus olivier
8

Similar Publications

Background/purpose: Burning moouth syndrome (BMS) is a chronic pain condition similar to neuropathic pain. It is characterized by a persistent burning sensation in the oral cavity. Despite the lack of clarity regarding the etiology of BMS, recent studies have reported an association between the gut microbiome and neuropathic pain.

View Article and Find Full Text PDF

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Introduction: Antibiotic overuse is driving a global rise in antibiotic resistance, highlighting the need for robust antimicrobial stewardship (AMS) initiatives to improve prescription practices. While antimicrobials are essential for treating sepsis and preventing surgical site infections (SSIs), they can inadvertently disrupt the gut microbiota, leading to postoperative complications. Treatment methods vary widely across nations due to differences in drug choice, dosage, and therapy duration, affecting antibiotic resistance rates, which can reach up to 51% in some countries.

View Article and Find Full Text PDF

Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions.

Life Metab

December 2023

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.

In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!