Hydrogen peroxide (HO) is a messenger involved in both damaging neuroinflammatory responses and physiological cell communication. The ventrolateral medulla, which regulates several vital functions including breathing and blood pressure, is highly influenced by hydrogen peroxide, whose extracellular levels could be determined by hypoxia and microglial activity, both of which modulate ventrolateral medulla function. Therefore, in this study we aimed to test whether different patterns of hypoxia and/or putative microglial modulators change extracellular hydrogen peroxide in the ventrolateral medulla by using an enzymatic reactor online sensing procedure specifically designed for this purpose. With this new technique, we detected extracellular levels of hydrogen peroxide in the ventrolateral medulla in vitro, which spontaneously fluctuated. These fluctuations are reduced by minocycline, a putative microglial inhibitor, and by the microglial toxin liposomal clodronate. Suitably, lipopolysaccharide increases extracellular hydrogen peroxide, while minocycline and liposomal clodronate reduce this increase. Application of blue light to slices with microglia expressing channelrhodopsin-2 also increases extracellular hydrogen peroxide. Moreover, long-lasting and intermittent hypoxia (as well as subsequent reoxygenation) increase extracellular hydrogen peroxide to similar levels, which is partially prevented by minocycline. The effect of long-lasting hypoxia was reproduced in vivo. Overall, our data show that changes in oxygen concentration, and possibly microglial function, modulate extracellular HO levels in the ventrolateral medulla, which could influence the function of this neural circuit under normal and pathological conditions related to inflammation and/or hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2018.04.032 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.
The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!