BACKGROUND Bone-marrow mesenchymal stem cells (BMSCs) are pluripotent stem cells with potent self-renewal and differentiation ability that are widely used in transplantation of cell therapy. But the mechanism on microRNA (miRNA) regulating stem cell differentiation is complicated and unclear. The aim of this study was to investigate whether miR-199b-5p is involved in differentiation of cardiomyocyte-like cells and identify potential signal pathways in BMSCs. MATERIAL AND METHODS Mouse BMSCs were treated with 5-azacytidine and transfected by miR-199b-5p mimic and inhibitor, respectively. qRT-PCR was used to detect the expression of miR-199b-5p in BMSCs, 5-azacytidine treated BMSCs, and neonatal murine cardiomyocytes. The expression of cardiac specific genes and the HSF1/HSP70 signal pathway were examined by qRT-PCR or western blotting. The proliferation and migration of BMSCs were evaluated by CCK-8 assay and wound-healing assay. RESULTS The expression of miR-199b-5p decreased gradually in the process of differentiation of BMSCs toward cardiomyocyte-like cells. The expression of cardiac specific genes and HSF1/HSP70 were increased in the miR-199b-5p inhibitor group; however, the miR-199b-5p mimic group presented an opposite result. Both the miR-199b-5p inhibitor group and the miR-199b-5p mimic group had no influence on BMSCs proliferation and migration. Using lentivirus vectors bearing HSF1 shRNA to silence HSF1 and HSP70, the anticipated elevated expression effect of cardiac specific genes induced by miR-199b-5p inhibitor was suppressed. CONCLUSIONS Downregulation of miR-199b-5p induced differentiation of BMSCs toward cardiomyocyte-like cells partly via the HSF1/HSP70 signaling pathway, and had no influence on BMSCs proliferation and migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951024 | PMC |
http://dx.doi.org/10.12659/MSM.907441 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Henan Xinxiang, 453003, People's Republic of China.
To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.
View Article and Find Full Text PDFCells
December 2024
Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!