Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall.

ACS Infect Dis

Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry , Tel Aviv University, Tel Aviv , 6997801 , Israel.

Published: July 2018

Here, we describe the preparation and evaluation of α,β-unsaturated carbonyl derivatives of the bacterial translation inhibiting antibiotic chloramphenicol (CAM). Compared to the parent antibiotic, two compounds containing α,β-unsaturated ketones (1 and 4) displayed a broader spectrum of activity against a panel of Gram-positive pathogens with a minimum inhibitory concentration range of 2-32 μg/mL. Interestingly, unlike the parent CAM, these compounds do not inhibit bacterial translation. Microscopic evidence and metabolic labeling of a cell wall peptidoglycan suggested that compounds 1 and 4 caused extensive damage to the envelope of Staphylococcus aureus cells by inhibition of the early stage of cell wall peptidoglycan biosynthesis. Unlike the effect of membrane-disrupting antimicrobial cationic amphiphiles, these compounds did not rapidly permeabilize the bacterial membrane. Like the parent antibiotic CAM, compounds 1 and 4 had a bacteriostatic effect on S. aureus. Both compounds 1 and 4 were cytotoxic to immortalized nucleated mammalian cells; however, neither caused measurable membrane damage to mammalian red blood cells. These data suggest that the reported CAM-derived antimicrobial agents offer a new molecular scaffold for development of novel bacterial cell wall biosynthesis inhibiting antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536003PMC
http://dx.doi.org/10.1021/acsinfecdis.8b00078DOI Listing

Publication Analysis

Top Keywords

cell wall
16
antibiotic chloramphenicol
8
bacterial cell
8
bacterial translation
8
parent antibiotic
8
cam compounds
8
wall peptidoglycan
8
compounds
6
bacterial
5
derivatives ribosome-inhibiting
4

Similar Publications

Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation.

Autoimmun Rev

December 2024

Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. Electronic address:

Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA.

View Article and Find Full Text PDF

In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer.

Colloids Surf B Biointerfaces

December 2024

Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil. Electronic address:

Background: Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown.

View Article and Find Full Text PDF

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.

View Article and Find Full Text PDF

Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.

View Article and Find Full Text PDF

The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!