Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb CdCl I , which emits "warm" white light with a high color rendering index of 88. To date, Rb CdCl I is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb CdCl I is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl I ] octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb CdCl I . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201802056 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
October 2024
Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA.
Reaction of 2-amino-5-iodo-pyridine (5IAP) with concentrated HBr at room temperature yielded 2-amino-5-iodo-pyridinium bromide, CHIN ·Br or (5IAPH)Br. The complex formed pale-yellow crystals, which exhibit significant hydrogen bonding between the amino and pyridinium N-H donors and bromide ion acceptors. Halogen bonding is also observed.
View Article and Find Full Text PDFSmall
December 2024
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
Typical PEDOT:PSS hole-transporting layers frequently present some issues, including mismatched energy levels, high acidity, severe hygroscopicity, etc., all of which significantly weaken device performance. Herein, an approach of halogenated solvent treatment to modulate the physical properties of indium tin oxide (ITO) substrates is employed.
View Article and Find Full Text PDFACS Nano
December 2024
School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
2D Ruddlesden-Popper (RP) perovskites, upon inclusion of a chiral amine, exhibit chirality-induced spin selectivity (CISS). Although alloying at the halogen site in MBA-based RPs (MBA: methylbenzylammonium) is one of the suitable routes to tune the CISS effect, the mixed-halide RP perovskites exhibited complete suppression of chirality when probed through circular dichroism (CD). Here, we present the CISS effect in a series of mixed-halide RP perovskites.
View Article and Find Full Text PDFInorg Chem
December 2024
College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
The strategy of organic ligand exchange is proposed to tune the optical properties of organic-inorganic hybrid cuprous halides. In this work, the chiral ligand (S)-(-)-2,2'-bis(di--tolylphosphino)-1,1'-binaphthyl ((S)-Tol-BINAP) and achiral triphenylphosphine (PPh) are introduced into cuprous halides CuX-PPh-[(S)-Tol-BINAP] (X = Cl, Br, I) through organic ligand exchange. As a result, the mixed organic ligands can enhance second harmonic generation (SHG) and aggregation-induced emission (AIE) optical properties.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, 01601 Kyiv, Ukraine.
Hybrid halide perovskites form a promising class of light-absorbing materials. Among the numerous 3D semiconducting perovskites, there is a group of emerging aziridinium-based hybrids that are considered to be prospective materials for optoelectronic applications. In this work, we report the mixed halide aziridinium perovskites of (AzrH)PbBrxI3-x series (AzrH = aziridinium).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!