Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Properties of filaments ignited by multi-millijoule, 90 fs mid-infrared pulses centered at 3.9 μm are examined experimentally by monitoring plasma density, losses, spectral dynamics and beam profile evolution at different focusing strengths. By changing from strong (f=0.25 m) to loose (f=7 m) focusing, we observe a shift from plasma-assisted filamentation to filaments with low plasma density. In the latter case, filamentation manifests itself by beam self-symmetrization and spatial self-channeling. Spectral dynamics in the case of loose focusing is dominated by the nonlinear Raman frequency downshift, which leads to the overlap with the CO resonance in the vicinity of 4.2 μm. The dynamic CO absorption in the case of 3.9 μm filaments with their low plasma content is the main mechanism of energy losses and, either alone or together with other nonlinear processes, contributes to the arrest of intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.002185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!