A novel mode-locking method based on the nonlinear multimode interference in the stretched graded-index multimode optical fiber (GIMF) is proposed in this Letter. The simple device geometry, where the light is coupled in and out of the stretched GIMF via single-mode fibers, is demonstrated to exhibit the temporal intensity discrimination required for mode locking. The nonlinear saturable absorber (SA) characteristics of the device are controllable by simply adjusting the strength of the stretching applied. The modulation depth of the device, which consists of ∼23.5  cm GIMF, is tuned from 10.37% to 22.27%. Such a simple SA enables the wavelength-switchable mode-locking operation in a ring Er-doped fiber laser, and ultrafast pulses with a pulse width of 506 fs at 1572.5 nm and 416 fs at 1591.4 nm were generated. The versatility and simplicity of the SA device, together with the possibility of scaling the pulse energy, make it highly attractive in ultrafast photonics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.002078DOI Listing

Publication Analysis

Top Keywords

stretched graded-index
8
graded-index multimode
8
multimode optical
8
optical fiber
8
saturable absorber
8
fiber laser
8
mode locking
8
fiber
4
fiber saturable
4
absorber erbium-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!