Abdominopelvic 1.5-T and 3.0-T MR Imaging in Healthy Volunteers: Relationship to Formation of DNA Double-Strand Breaks.

Radiology

From the Department of Diagnostic and Interventional Radiology and Neuroradiology (S.S., T.S., A.W., M.F., K.N.) and Department of High Field and Hybrid MR Imaging (H.H.Q.), University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; and Institute of Medical Radiation Biology (E.M., G.I.) and Erwin L. Hahn Institute for MR Imaging (O.K., H.H.Q.), University of Duisburg-Essen, Germany.

Published: August 2018

Purpose To investigate the relationship between abdominopelvic magnetic resonance (MR) imaging and formation of DNA double-strand breaks (DSBs) in peripheral blood lymphocytes among a cohort of healthy volunteers. Materials and Methods Blood samples were obtained from 40 healthy volunteers (23 women and 17 men; mean age, 27.2 years [range, 21-37 years]) directly before and 5 and 30 minutes after abdominopelvic MR imaging performed at 1.5 T (n = 20) or 3.0 T (n = 20). The number of DNA DSBs in isolated blood lymphocytes was quantified after indirect immunofluorescent staining of a generally accepted DSB marker, γ-H2AX, by means of high-throughput automated microscopy. As a positive control of DSB induction, blood lymphocytes from six volunteers were irradiated in vitro with x-rays at a dose of 1 Gy (70-90 keV). Statistical analysis was performed by using a Friedman test. Results No significant alteration in the frequency of DNA DSB induction was observed after MR imaging (before imaging: 0.22 foci per cell, interquartile range [IQR] = 0.54 foci per cell; 5 minutes after MR imaging: 0.08 foci per cell, IQR = 0.39 foci per cell; 30 minutes after MR imaging: 0.09 foci per cell, IQR = 0.63 foci per cell; P = .057). In vitro radiation of lymphocytes with 1 Gy led to a significant increase in DSBs (0.22 vs 3.43 foci per cell; P = .0312). The frequency of DSBs did not differ between imaging at 1.5 T and at 3.0 T (5 minutes after MR imaging: 0.23 vs 0.06 foci per cell, respectively [P = .57]; 30 minutes after MR imaging: 0.12 vs 0.08 foci per cell [P = .76]). Conclusion Abdominopelvic MR imaging performed at 1.5 T or 3.0 T does not affect the formation of DNA DSBs in peripheral blood lymphocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2018172453DOI Listing

Publication Analysis

Top Keywords

foci cell
36
blood lymphocytes
16
minutes imaging
16
healthy volunteers
12
formation dna
12
imaging
11
foci
9
cell
9
dna double-strand
8
double-strand breaks
8

Similar Publications

BRCA1 deficiency is observed in approximately 25% of triple-negative breast cancer (TNBC). BRCA1, a key player of homologous recombination (HR) repair, is also involved in stalled DNA replication fork protection and repair. Here, we investigated the sensitivity of BRCA1-deficient TNBC models to the frequently used replication chain terminator gemcitabine, which does not directly induce DNA breaks.

View Article and Find Full Text PDF

Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-ER MCSs - the ER-Mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA).

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks.

View Article and Find Full Text PDF

Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells.

Clin Transl Radiat Oncol

March 2025

Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).

View Article and Find Full Text PDF

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!