The systematic simulation study of a structure with nanogap-enhanced Raman scattering and surface-enhanced Raman scattering (NERS-SERS) substrate is presented. This double-enhanced Raman scattering (DERS) substrate with coupling between the localized surface plasmons of noble metal nanosphere colloids and surface plasmon polaritons of a 1D sinusoidal noble metal nanograting is analyzed. With the excitation light wavelength at 785 nm, the key structure parameters of noble metal nanospheres and sinusoidal noble metal nanogratings are deduced by FDTD. With the optimal DERS substrate, the SERS enhancement factor (EF) can be 9 orders of magnitude as possible. The DERS substrate was fabricated, and an extra SERS effect was demonstrated by experiments. This DERS substrate will be integrated with microfluidics in the next work, with the purpose of in situ, real-time, continuous detection of trace water soluble gas-phase or airborne agents, such as trace explosives in air.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.003172DOI Listing

Publication Analysis

Top Keywords

ders substrate
20
noble metal
16
raman scattering
12
sinusoidal noble
8
ders
5
substrate
5
substrate based
4
based ners-sers
4
ners-sers interaction
4
interaction integrated
4

Similar Publications

A versatile technique for indiscriminate detection of unlabeled biomolecules via double-enhanced Raman scattering.

Int J Biol Macromol

February 2023

Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:

Surface-enhanced Raman scattering is a rapid, highly sensitive and non-destructive technique, whereas, it was still limited to designing different types of enhancing substrates or using probe molecules to only identify single biomolecules. Especially, some special biomolecules have weak Raman signals in solid state, so it is a huge challenge to obtain their enhanced Raman signals in liquid. To solve the problem, a double-enhanced Raman scattering (DERS) detection platform was developed in this study based on silver nanoparticles that were prepared by using an appropriate amount of sodium borohydride and guided by calcium ions to form good "hot spots".

View Article and Find Full Text PDF

This report presents a contactless and robust dielectric microspheres (DMs)-assisted surface enhanced Raman scattering (SERS) enhancement method to improve SERS detection sensitivity detection sensitivity. DMs that could focus and collect light were embedded within the polydimethylsiloxane (PDMS) film to avoid direct contact with the analytical solution and improve detection reliability. The as prepared DMs embedded PDMS (DMs-PDMS) film was integrated with a microfluidic technique to enhance the SERS signal of a liquid substrate.

View Article and Find Full Text PDF

The systematic simulation study of a structure with nanogap-enhanced Raman scattering and surface-enhanced Raman scattering (NERS-SERS) substrate is presented. This double-enhanced Raman scattering (DERS) substrate with coupling between the localized surface plasmons of noble metal nanosphere colloids and surface plasmon polaritons of a 1D sinusoidal noble metal nanograting is analyzed. With the excitation light wavelength at 785 nm, the key structure parameters of noble metal nanospheres and sinusoidal noble metal nanogratings are deduced by FDTD.

View Article and Find Full Text PDF

Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model.

Int J Cancer

September 2018

Department of Nutrition and Food Science - Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX.

Dietary fermentable fiber generates short-chain fatty acids (SCFA), for example, butyrate, in the colonic lumen which serves as a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for histone acetylases. In addition, n-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear receptors. In an effort to gain insight into the global dimension of post-translational modification of histones (including H3K4me3 and H3K9ac) and clarify the chemoprotective impact of dietary bioactive compounds on transcriptional control in a preclinical model of colon cancer, we generated high-resolution genome-wide RNA (RNA-Seq) and "chromatin-state" (H3K4me3-seq and H3K9ac-seq) maps for intestinal (epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed diets containing bioactive (i) fish oil, (ii) fermentable fiber (a rich source of SCFA), (iii) a combination of fish oil plus pectin, or (iv) control, devoid of fish oil or pectin.

View Article and Find Full Text PDF

The present neuroimaging study investigated two aspects of difficulties with emotion associated with Borderline Personality Disorder (BPD): affective lability and difficulty regulating emotion. While these two characteristics have been previously linked to BPD symptomology, it remains unknown whether individual differences in affective lability and emotion regulation difficulties are subserved by distinct neural substrates within a BPD sample. To address this issue, sixty women diagnosed with BPD were scanned while completing a task that assessed baseline emotional reactivity as well as top-down emotion regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!