Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Raman spectroscopy has been applied to the quantitative analysis of the concentration of bisulfate in acid-sulfate fluids at different temperatures. The quantitative analysis method is based on the peak area ratios of [Formula: see text](ν) and HO (ν), where PA([Formula: see text]/HO) = [[Formula: see text]] × (0.0066 × T + 1.3070) at a temperature range of 0-100 ℃. We found that the molal scattering coefficient of bisulfate increases slightly at the elevated temperature may be due to the changes of fraction of water molecules that are hydrogen-bonded. The method can also be applied to analyze physicochemical parameters of other acid fluids, such as hydrogen phosphate, bicarbonate, etc., and especially to the in situ detection of deep sea acid-sulfate hydrothermal fluids in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702818773117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!