All organisms regulate transcription of their genes. To understand this process, a complete understanding of how transcription factors find their targets in cellular nuclei is essential. The DNA sequence and other variables are known to influence this binding, but the distribution of transcription factor binding patterns remains mostly unexplained in metazoan genomes. Here, we investigate the role of chromosome conformation in the trajectories of transcription factors. Using molecular dynamics simulations, we uncover the principles of their diffusion on chromatin. Chromosome contacts play a conflicting role: at low density they enhance transcription factor traffic, but at high density they lower it by volume exclusion. Consistently, we observe that in human cells, highly occupied targets, where protein binding is promiscuous, are found at sites engaged in chromosome loops within uncompacted chromatin. In summary, we provide a framework for understanding the search trajectories of transcription factors, highlighting the key contribution of genome conformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928121 | PMC |
http://dx.doi.org/10.1038/s41467-018-04130-x | DOI Listing |
Medicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.
Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.
Plant Physiol
January 2025
School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
Cold stress severely impacts the quality and yield of grapevine (Vitis L.). In this study, we extend our previous work to elucidate the role and regulatory mechanisms of Vitis amurensis MYB transcription factor 4a (VaMYB4a) in grapevine's response to cold stress.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!