Vascular remodeling induced by hemodynamic stimuli contributes to the pathophysiology of cardiovascular diseases. The importance of vascular cells (endothelial cells and smooth muscle cells) glycocalyx in the mechanotransduction of flow-induced shear stress at the cellular and molecular levels has been demonstrated over the past decade. However, its potential mechanotransduction role in vascular remodeling has triggered little attention. In the present study, a home-made apparatus was used to expose the rat abdominal aorta to sterile, flow or no flow, normal-pressure or high-pressure conditions for 4 days. The histomophometric, cellular, and molecular analysis of vessels were performed. The results showed that after exposing the vessels in the flow and high-pressure condition, the apoptotic rate, the cell number, and the RNA level of contractile marker gene smooth muscle 22 of smooth muscle cells were significantly increased, whereas the expression of nitric oxide synthase, α-smooth muscle actin, smoothelin, and calponion showed no significant differences compared with the flow and normal-pressure groups. Moreover, the histomophometric analysis of vascular walls suggested a remodeling induced by flow and high-pressure loading consistent with the classic hypertensive aortic phenotype, which is characterized by a thicker and more rigid vascular wall as well as increased aortic diameter. However, those phenomena were totally abolished after compromising the integrity of glycocalyx by the treatment of vessels with hyaluronidase, which provided evidence of the important mechanotransduction role of the vascular cells glycocalyx in vascular remodeling induced by hemodynamic stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10678 | DOI Listing |
Atherosclerosis and aortic aneurysms are prevalent cardiovascular diseases in the elderly, characterized by chronic inflammation and oxidative stress. This study explores the role of CircXYLT1 in regulating oxidative stress and vascular remodeling in age-related vascular diseases. RNA sequencing revealed a significant upregulation of CircXYLT1 in the vascular tissues of aged mice, highlighting its potential role in age-related vascular diseases.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Accident and Emergency, Etlik City Hospital, Ankara 06170, Turkey.
Arterial diseases (ADs) are a significant health problem, with high mortality and morbidity rates. Endovascular interventions, such as balloon angioplasty (BA), bare-metal stents (BMSs), drug-eluting stents (DESs) and drug-coated balloons (DCBs), have made significant progress in their treatments. However, the issue has not been fully resolved, with restenosis remaining a major concern.
View Article and Find Full Text PDFLife (Basel)
December 2024
Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria.
Background: Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland.
Despite significant advances in imaging modalities for diagnosing coronary artery disease (CAD), there remains a need for novel diagnostic approaches with high predictive values and fewer limitations. Circulating biomarkers, including cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8), cell adhesion molecules such as soluble vascular cell adhesion molecule-1 (sVCAM-1), peptides secreted by endothelial cells such as endothelin-1 (ET-1), and enzymes involved in extracellular matrix remodeling such as a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) offer a promising alternative. This study aimed to evaluate the correlation between the plasma levels of selected biomarkers and the presence and severity of CAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!