Readily Accessible Ambiphilic Cyclopentadienes for Bioorthogonal Labeling.

J Am Chem Soc

Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , United States.

Published: May 2018

A new class of bioorthogonal reagents based on the cyclopentadiene scaffold is described. The diene 6,7,8,9-tetrachloro-1,4-dioxospiro[4,4]nona-6,8-diene (a tetrachlorocyclopentadiene ketal, TCK) is ambiphilic and self-orthogonal with remarkable stability. The diene reacts rapidly with a trans-cyclooctene and an endo-bicyclononyne, but slowly with dibenzoazacyclooctyne (DIBAC), allowing for tandem labeling studies with mutually orthogonal azides that react rapidly with DIBAC. TCK analogues are synthesized in three steps from inexpensive, commercially available starting materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314806PMC
http://dx.doi.org/10.1021/jacs.8b02978DOI Listing

Publication Analysis

Top Keywords

accessible ambiphilic
4
ambiphilic cyclopentadienes
4
cyclopentadienes bioorthogonal
4
bioorthogonal labeling
4
labeling class
4
class bioorthogonal
4
bioorthogonal reagents
4
reagents based
4
based cyclopentadiene
4
cyclopentadiene scaffold
4

Similar Publications

The use of metal catalysts to accelerate an organic transformation has proven indispensable for access to structural motifs having applications across medicinal, polymer, materials chemistry, and more. Most catalytic approaches have cast transition metals in the "leading role"; these players mediate important reactions such as C-C cross coupling and the hydrogenation of unsaturated bonds. These catalysts may require collaboration, featuring Lewis acidic or basic additives to promote a desired reaction outcome.

View Article and Find Full Text PDF

Light-driven strategies that enable the chemoselective activation of a specific bond in multifunctional systems are comparatively underexplored in comparison to transition-metal-based technologies, yet desirable when considering the controlled exploration of chemical space. With the current drive to discover next-generation therapeutics, reaction design that enables the strategic incorporation of an sp carbon center, containing multiple synthetic handles for the subsequent exploration of chemical space would be highly enabling. Here, we describe the photoactivation of ambiphilic C1 units to generate α-bimetalloid radicals using only a Lewis base and light source to directly activate the C-I bond.

View Article and Find Full Text PDF

Organometallic-mediated chain growth polymerization of readily accessible chemical building blocks is responsible for important commercial and technological advances in polymer science, but the incorporation of heteroatoms into the polymer backbone through these mechanisms remains a challenge. Transition metal π-allyl complexes are well-developed organometallic intermediates for carbon-heteroatom bond formation in small-molecule catalysis yet remain underexplored in polymer science. Here, we developed a regioselective palladium-phosphoramidite-catalyzed chain-growth allylic amination polymerization of vinyl aziridines for the synthesis of novel nitrogen-rich polymers via ambiphilic π-allyl complexes.

View Article and Find Full Text PDF

π-Electron Fluctuation-Induced P /C Ambiphilic Interaction for Intramolecular C -H Bond Activation.

Chemistry

February 2024

College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China.

Herein, we describe how computational mechanistic understanding has led directly to the discovery of new 2H-phosphindole for C-C bond activation and dearomatization reaction. We uncover an unexpected intramolecular C-H bond activation with a 2H-phosphindole derivative. This new intriguing experimental observation and further theoretical studies led to an extension of the reaction mechanism with 2H-phosphindole.

View Article and Find Full Text PDF

Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!