AI Article Synopsis

  • Coordination of manganese carbonyl (Mn(CO)) to the π system of hydroquinone helps in losing protons, forming benzoquinone complexes.
  • The attachment of benzoquinone's oxygen to additional metal ions leads to the creation of neutral quinoid polymers in various dimensions (one-, two-, or three-dimensional).
  • The specific geometry of the metal ion and the introduction of additional "spacer" ligands influence the characteristics of the resulting polymer.

Article Abstract

Coordination of Mn(CO) to the π system in hydroquinone facilitates proton loss to afford benzoquinone complexes. Subsequent σ coordination of the benzoquinone oxygen atoms to added metal ions results in neutral one-, two-, or three-dimensional quinoid polymers. The geometrical requirements of the metal ion and the presence of added "spacer" ligands dictate the type of polymer formed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3191::AID-ANIE3191>3.0.CO;2-NDOI Listing

Publication Analysis

Top Keywords

benzoquinone complexes
8
metal-mediated self-assembly
4
self-assembly π-bonded
4
π-bonded benzoquinone
4
complexes polymers
4
polymers tunable
4
tunable geometries
4
geometries coordination
4
coordination mnco
4
mnco system
4

Similar Publications

For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).

View Article and Find Full Text PDF

Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity.

View Article and Find Full Text PDF

This study explores the selective oxidative scission of bicyclo[2.2.2]octenones derived from masked -benzoquinones (MOBs).

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!