Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-7DOI Listing

Publication Analysis

Top Keywords

structure base
4
base catalysis
4
catalysis supercritical
4
supercritical water
4
water noncatalytic
4
noncatalytic benzaldehyde
4
benzaldehyde disproportionation
4
disproportionation water
4
water high
4
high temperatures
4

Similar Publications

As virality has become increasingly central in shaping information sources' strategies, it raises concerns about its consequences for society, particularly when referring to the impact of viral news on the public discourse. Nonetheless, there has been little consideration of whether these viral events genuinely boost the attention received by the source. To address this gap, we analyze content timelines from over 1000 European news outlets from 2018 to 2023 on Facebook and YouTube, employing a Bayesian structural time series model to evaluate the impact of viral posts.

View Article and Find Full Text PDF

Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.

View Article and Find Full Text PDF

The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.

View Article and Find Full Text PDF

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation.

Nat Commun

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.

High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!