Dehydrosilylation of Bi(SiMe ) with Me AlH gave the title compound. This has a trimeric structure, the central unit of which is a six-membered Al Bi ring (see structure). In agreement with the VSEPR model the angles are greater at the Al centers and smaller at the Bi centers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1521-3773(19990401)38:7<967::AID-ANIE967>3.0.CO;2-CDOI Listing

Publication Analysis

Top Keywords

[me albisime
4
albisime -the
4
-the structurally
4
structurally characterized
4
characterized organometallic
4
organometallic compound
4
compound bond
4
bond element
4
element group
4
group dehydrosilylation
4

Similar Publications

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Protocol for investigating astrocytic mitochondria in neurons of adult mice using two-photon microscopy.

STAR Protoc

January 2025

Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China. Electronic address:

Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons.

View Article and Find Full Text PDF

Purpose: Our study evaluated skeletal muscle mass, function and quality among mild autonomous cortisol secretion (MACS) patients and non-functioning adrenal incidentaloma (NFAI) patients in comparison with the control group without adrenal mass.

Methods: 63 NFAI (49 female, 14 male) and 31 MACS (24 female, 7 male) patients were included in the study. As the control group, 44 patients (31 women, 13 men) who were known to have no radiological adrenal pathology on computed tomography or magnetic resonance imaging performed for other reasons were selected.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!