A Novel Phenylene Topology: Total Syntheses of Zigzag [4]- and [5]Phenylene.

Angew Chem Int Ed Engl

Department of Chemistry, University of California at Berkeley (and) The Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA), Fax: (+1) 510-643-5208.

Published: March 1999

In agreement with theory, the title compounds 1 and 2, which were prepared by CpCo-catalyzed cycloisomerizations of appropriate oligoalkynylbenzenes, display physical properties that are in contrast with those of the corresponding linear isomers, but that are very similar to those of the angular topomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1521-3773(19990315)38:6<800::AID-ANIE800>3.0.CO;2-MDOI Listing

Publication Analysis

Top Keywords

novel phenylene
4
phenylene topology
4
topology total
4
total syntheses
4
syntheses zigzag
4
zigzag [4]-
4
[4]- [5]phenylene
4
[5]phenylene agreement
4
agreement theory
4
theory title
4

Similar Publications

This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.

View Article and Find Full Text PDF

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

Facilitating rapid charge transfer in electrode materials necessitates the optimization of their ionic transport properties. Currently, only a limited number of Li/Na-ion organic cathode materials have been identified, and those exhibiting intrinsic solid-phase ionic conductivity are even rarer. In this study, we present tetra-lithium and sodium salts with the generic formulae: A-Ph-CHP and A-Ph-PhP, wherein A = Li, Na; Ph-CHP = 2,5-dioxido-1,4-phenylene bis(methylphosphinate); Ph-PhP = 2,5-dioxido-1,4-phenylene bis(phenylphosphinate), as novel alkali-ion reservoir cathode materials.

View Article and Find Full Text PDF

The corrosion of metals, particularly rust on iron and its alloys, poses significant challenges across industries, with notable economic and environmental consequences. Traditional rust prevention methods, reliant on chemical inhibitors and coatings, often raise concerns regarding their environmental and health impacts. In response, advancements in corrosion science have emphasized the potential of o-phenylenediamine (OPD) derivatives and vaseline-based mixtures as innovative, eco-friendly solutions.

View Article and Find Full Text PDF

Initially, 4,4'-(1,4-phenylene)di(sulfonic)pyridinium tetrachloroferrate (PDSPTCF) as a novel organic-inorganic hybrid salt was synthesized and identified by elemental mapping, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectrometer, Raman spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, vibrating-sample magnetometry, and thermal gravimetric (TG) techniques. Then, the catalytic performance of this hybrid salt was assessed for the producing benzo[a]benzo[6,7]chromeno[2,3-c]phenazine derivatives via one-pot multicomponent domino reaction (MDR) of benzene-1,2-diamine, 2-hydroxynaphthalene-1,4-dione and aldehydes under optimal conditions (70 °C, solvent-free, 5 mol% PDSPTCF) in short reaction times and high yields. Highly efficacy of the PDSPTCF for the production of benzo[a]pyrano[2,3-c]phenazines can be assigned to the synergistic effect of Lewis and Brønsted acids, and having two positions of each acid (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!