The basis for the reduced growth rates of heterokaryons between strains carrying nonallelic combinations of gene/point mutations (ad-3R) and multilocus deletion mutations (ad-3IR) has been investigated by a simple genetic test. The growth rates of forced 2-component heterokaryons (dikaryons) between multilocus deletion mutations were compared with forced 3-component heterokaryons (trikaryons) containing an ad-3AR ad-3BR double mutant as their third component. Since the third component has no genetic damage at other loci immediately adjacent to the ad-3A or ad-3B locus, the growth rate on minimal medium depends on the functional activity of the unaltered (and presumed "wild-type") ad-3A and ad-3B loci in the first two components. In many cases, the requirements of the original dikaryons have been satisfied by the addition of unaltered genes (in the third component), and these trikaryons grow at wild-type rate on minimal medium. Those trikaryons growing at less than wild-type rate were shown to be adenine-requiring, and wild-type growth rate was obtained with the addition of low levels of adenine to the medium. Such tests in the present experiments have shown that ad-3IR mutations result not only in inactivation of the ad-3 loci by multilocus deletion but also, in many cases, in partial gene inactivation by an unknown mechanisms at other loci in the immediately adjacent regions. The heterozygous effects observed in our present experiments with multilocus deletions in Neurospora can be explained either by a spreading-type position effect of the type found by others in Drosophila, mice, Oenothera and Aspergillus or by undetected genetic damage ("cryptic mutations") in the immediately adjacent genetic regions. An attempt will be made to distinguish between these two alternative hypotheses with techniques for DNA cloning and sequencing in future experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0027-5107(88)90110-8DOI Listing

Publication Analysis

Top Keywords

ad-3a ad-3b
12
multilocus deletion
12
third component
12
heterozygous effects
8
multilocus deletions
8
ad-3b loci
8
growth rates
8
deletion mutations
8
genetic damage
8
loci adjacent
8

Similar Publications

Comparison of the spectra of genetic damage in formaldehyde-induced ad-3 mutations between DNA repair-proficient and -deficient heterokaryons of Neurospora crassa.

Mutat Res

September 1999

Mammalian Mutagenesis Group, Laboratory of Toxicology, Systems Toxicology Branch, Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27703-27709, USA.

The mutagenic effects of formaldehyde (FA) have been compared in DNA repair-proficient (heterokaryon 12) and DNA repair-deficient (heterokaryon 59) two-component heterokaryons of Neurospora crassa. The data from forward-mutation experiments were used to compare the spectra of FA-induced specific-locus mutations at two closely linked loci in the adenine-3 (ad-3) region and on the FA-induced inactivation of heterokaryotic conidia. Previous studies have demonstrated that specific-locus mutations at these two loci result from five major genotypic classes, namely two classes of gene/point mutations (ad-3A(R) and ad-3B(R)), and three classes of multilocus deletion mutations ([ad-3A](IR), [ad-3B](IR), and [ad-3A ad-3B](IR)).

View Article and Find Full Text PDF

The data from forward-mutation experiments to obtain specific-locus mutations at two closely linked loci in the adenine-3 (ad-3) region of heterokaryon 12 (H-12) of Neurospora crassa have been tabulated to determine the relative frequencies and mutational spectra of ad-3 mutants occurring spontaneously and those induced by 22 different chemical treatments. Previous studies have demonstrated that specific-locus mutations at these two loci result from 5 major genotypic classes, namely two classes of gene/point mutations (ad-3AR and ad-3BR), and 3 classes of multilocus deletion mutations ([ad-3A]IR, [ad-3B]IR and [ad-3A ad-3B]IR). In addition, prior studies have demonstrated that some chemical mutagens induced ad-3 mutants exclusively, or almost exclusively, by gene/point mutation and other chemical mutagens by gene/point mutation and multilocus deletion mutation.

View Article and Find Full Text PDF

The data from forward-mutation experiments to obtain specific-locus mutations at two closely linked loci in the adenine-3 (ad-3) region of heterokaryon 12 (H-12) of Neurospora crassa have been used to determine the relative frequencies and mutational spectra of ad-3 mutants occurring spontaneously and those induced by 7 different radiation treatments. Previous studies have demonstrated that specific-locus mutants at these two loci result from 5 major genotypic classes, namely two classes of gene/point mutations (ad-3AR and ad-3BR), and 3 classes of multilocus deletion mutations ([ad-3A]IR, [ad-3B]IR and [ad-3A ad-3B]IR). Two different approaches were used to compare spontaneous mutation in the ad-3 region with that induced by 7 different radiation treatments (UV, 32P, 447 MeV protons, 85Sr, 250 kVp X-rays, 39 MeV helium ions, and 101 MeV carbon ions).

View Article and Find Full Text PDF

Studies have been performed to compare the mutagenicity and mutagenic specificity of the trifunctional alkylating agent, triethylenemelamine (TEM), and a closely related monofunctional agent, ethylenimine (EI), in the adenine-3 (ad-3) region of a 2-component heterokaryon (H-12) of Neurospora crassa. The primary objective of our studies was to characterize the genetic damage produced by each agent with regard to (1) mutagenic potency, and (2) the spectrum of specific-locus mutations induced in a lower eukaryotic organism. As in higher eukaryotes, specific-locus mutations in the ad-3 region of H-12 result from gene/point mutations, multilocus deletion mutations, and multiple-locus mutations.

View Article and Find Full Text PDF

Ethylene oxide (ETO) is an important industrial intermediate used extensively in the production of ethylene glycol, as a fumigant, and as a sterilant of choice for various medical devices. The mutagenicity of ETO was studied for the induction of specific-locus mutations in the adenine-3 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa. The objectives of these studies with ETO were to rank its mutagenic potency and to compare its mutational spectrum for induced specific-locus mutations with other chemical mutagens in this lower eukaryotic organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!