Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, online social media information has been the subject of study in several data science fields due to its impact on users as a communication and expression channel. Data gathered from online platforms such as Twitter has the potential to facilitate research over social phenomena based on sentiment analysis, which usually employs Natural Language Processing and Machine Learning techniques to interpret sentimental tendencies related to users’ opinions and make predictions about real events. Cyber-attacks are not isolated from opinion subjectivity on online social networks. Various security attacks are performed by hacker activists motivated by reactions from polemic social events. In this paper, a methodology for tracking social data that can trigger cyber-attacks is developed. Our main contribution lies in the monthly prediction of tweets with content related to security attacks and the incidents detected based on ℓ 1 regularization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982517 | PMC |
http://dx.doi.org/10.3390/s18051380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!