In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981662PMC
http://dx.doi.org/10.3390/s18051378DOI Listing

Publication Analysis

Top Keywords

indoor localization
12
unsupervised indoor
8
smartphone sensors
8
provide accurate
8
initial localization
8
localization
7
uiloc
5
localization based
4
based smartphone
4
sensors ibeacon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!