Importance: Brain amyloid deposition is a marker of Alzheimer disease (AD) pathology. The population-based prevalence and outcomes of amyloid positivity in a population without dementia are important for understanding the trajectory of amyloid positivity to clinically significant outcomes and for designing AD prevention trials.

Objective: To determine prevalence and outcomes of amyloid positivity in a population without dementia.

Design, Setting, And Participants: In the prospective, population-based Mayo Clinic Study of Aging in Olmsted County, Minnesota, participants without dementia were randomly selected from the county population and were clinically and cognitively evaluated at baseline and every 15 months from August 1, 2008, to September 18, 2018. They were also invited to undergo carbon11-Pittburgh compound B positron emission tomography (PET) imaging.

Exposures: Amyloid positivity (defined as a standardized uptake value ratio >1.42 on PET).

Main Outcomes And Measures: Prevalence of amyloid positivity in the Olmsted County population without dementia and risk of progression from no cognitive impairment (ie, normal cognition for age) to incident amnestic MCI (aMCI) and from MCI or aMCI to incident AD dementia.

Results: Of 3894 participants, 1671 underwent PET imaging and were included in the study; 2198 did not undergo imaging, and 25 were excluded for other reasons. The mean (SD) age of participants was 71.3 (9.8) years; 892 (53.4%) were men, and 179 (10.7%) had prevalent MCI. The prevalence of amyloid positivity without cognitive impairment in the population without dementia increased from 2.7% (95% CI, 0.5% to 4.9%) in persons aged 50 to 59 years to 41.3% (95% CI, 33.4% to 49.2%) in those aged 80 to 89 years at baseline. Prevalence of amyloid-positive MCI in the population without dementia increased from 0% in persons aged 50 to 59 years to 16.4% (95% CI, 10.3% to 22.5%) in those aged 80 to 89 years. The incident aMCI risk increased more than 2-fold in participants without cognitive impairment who were amyloid positive vs those who were amyloid negative (hazard ratio [HR], 2.26; 95% CI, 1.52 to 3.35; P < .001). The risk of AD dementia was 1.86 (95% CI, 0.89 to 3.88; P = .10) for amyloid-positive participants with MCI vs amyloid-negative participants with MCI, 1.63 (95% CI, 0.78 to 3.41; P = .20) for participants with aMCI who were amyloid positive vs amyloid negative, and 2.56 (95% CI, 1.35 to 4.88; P = .004) for amyloid-positive participants who were either without cognitive impairment or had aMCI vs those who were amyloid negative. Global cognitive and memory domain z scores declined significantly in amyloid-positive individuals during follow-up. The mean (SD) follow-up time from baseline was 3.7 (1.9) years to incident aMCI and 3.8 (2.0) years to incident AD dementia.

Conclusions And Relevance: Population-based prevalence of amyloid-positive status and progression rates of amyloid positivity provide valid information for designing AD prevention trials and assessing the public health outcomes of AD prevention and interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142936PMC
http://dx.doi.org/10.1001/jamaneurol.2018.0629DOI Listing

Publication Analysis

Top Keywords

amyloid positivity
28
population dementia
16
aged years
16
prevalence outcomes
12
outcomes amyloid
12
cognitive impairment
12
amyloid
10
positivity population
8
olmsted county
8
county population
8

Similar Publications

Amyloid-β deposition in basal frontotemporal cortex is associated with selective disruption of temporal mnemonic discrimination.

J Neurosci

January 2025

Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA

Cerebral amyloid-beta (Aβ) accumulation, a hallmark pathology of Alzheimer's disease (AD), precedes clinical impairment by two to three decades. However, it is unclear whether Aβ contributes to subtle memory deficits observed during the preclinical stage. The heterogenous emergence of Aβ deposition may selectively impact certain memory domains, which rely on distinct underlying neural circuits.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner.

View Article and Find Full Text PDF

Background: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatment. This study developed machine learning models to classify positron emission tomography (PET) Aβ-positivity in participants with preclinical and prodromal AD using data accessible to primary care physicians.

View Article and Find Full Text PDF

Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder ranging from mild cognitive impairment (MCI) to AD dementia. Abnormal cerebral perfusion alterations, influenced by amyloid-beta (Aβ) accumulations, have been implicated in cognitive decline along this spectrum.

Objective: This study investigates the relationship between cerebrospinal fluid (CSF) Aβ1-42 levels and regional cerebral blood flow (CBF) changes across the AD continuum using the Arterial Spin Labeling (ASL) technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!