Perivascular fibrosis and the microvasculature of the heart. Still hidden secrets of pathophysiology?

Vascul Pharmacol

Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.

Published: April 2018

Perivascular fibrosis, the deposition of connective tissue around the vessels, has been demonstrated crucially involved in the development of cardiac dysfunction. Although cardiac fibrosis has been shown to be reversible under certain experimental conditions, effective anti-fibrotic therapies remain largely elusive. Therefore, perivascular fibrosis currently represents a major therapeutic target for cardiovascular diseases. The main topic of this review will be to address the mechanisms underlying perivascular fibrosis of the vasculature within the myocardium, with a special focus on perivascular fibrosis of small vessels, microvascular dysfunction and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2018.04.007DOI Listing

Publication Analysis

Top Keywords

perivascular fibrosis
20
perivascular
5
fibrosis
5
fibrosis microvasculature
4
microvasculature heart
4
heart hidden
4
hidden secrets
4
secrets pathophysiology?
4
pathophysiology? perivascular
4
fibrosis deposition
4

Similar Publications

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

Introduction: Chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) are more prevalent in the elderly. There is a lack of large animal models that allow the study of the impact of age on CKD and HFpEF in a translational fashion. This manuscript reports the first large preclinical model of CKD-HFpEF and metabolic derangements in naturally aged swine.

View Article and Find Full Text PDF

Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity.

View Article and Find Full Text PDF

A positive-sense single-stranded RNA virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused the coronavirus disease 2019 (COVID-19) pandemic that devastated the world. While this is a respiratory virus, one feature of the SARS-CoV-2 infection was recognized to cause pathogenesis of other organs. Because the membrane fusion protein of SARS-CoV-2, the spike protein, binds to its major host cell receptor angiotensin-converting enzyme 2 (ACE2) that regulates a critical mediator of cardiovascular diseases, angiotensin II, COVID-19 is largely associated with vascular pathologies.

View Article and Find Full Text PDF

Objective: The Very Early Diagnosis of Systemic Sclerosis (VEDOSS) EUSTAR study showed that, despite not showing any clinical sign of disease, patients with Raynaud's and antinuclear antibodies and/or capillaroscopy abnormalities often progress to systemic sclerosis (SSc) within 5 years. We aimed to determine whether VEDOSS biosamples show biological SSc activity pre-clinically.

Methods: Skin biopsies were histologically analysed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!