Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2018.04.055 | DOI Listing |
J Endod
December 2024
Department of Restorative and Reconstructive Dentistry, Sydney Dental School, The University of Sydney, Surry Hills, Australia. Electronic address:
Introduction: External inflammatory root resorption (EIRR) is a significant complication that can occur following traumatic dental injuries, with a prevalence of approximately 18%. Most cases occur during the early stage of the mixed dentition. Specifically, EIRR occurs in approximately 5%-8% of luxation injuries, 30% of replanted teeth following avulsion, and 38% of intruded teeth.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic.
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant.
View Article and Find Full Text PDFBiomedicines
June 2024
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Platelet-rich fibrin (PRF), the coagulated plasma of fractionated blood, is widely used to support tissue regeneration in dentistry, and the underlying cellular and molecular mechanisms are increasingly being understood. Periodontal connective tissues steadily express CXCL8, a chemokine that attracts granulocytes and lymphocytes, supporting homeostatic immunity. Even though PRF is considered to dampen inflammation, it should not be ruled out that PRF increases the expression of CXCL8 in gingival fibroblasts.
View Article and Find Full Text PDFJ Mater Chem B
March 2024
Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy. Electronic address:
The possibility of using deep eutectic solvents (DESs) as co-solvents for stabilizing and preserving the native structure of DNA provides an attractive opportunity in the field of DNA biotechnology. The rationale of this work is a systematic investigation of the effect of hydrated choline-based DES on the structural stability of a 30-base-pair double-stranded DNA model via a combination of spectroscopic experiments and MD simulations. UV absorption and CD experiments provide evidence of a significant contribution of DESs to the stabilization of the double-stranded canonical (B-form) DNA structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!