Background: The functional architecture of resting-state networks (RSNs) is defined by their connectivity and metastability. Disrupted RSN connectivity has been amply demonstrated in schizophrenia while the role of metastability remains poorly defined. Here, we undertake a comprehensive characterisation of RSN organization in schizophrenia and test its contribution to the clinical profile of this disorder.

Methods: We extracted RSNs representing the default mode (DMN), central executive (CEN), salience (SAL), language (LAN), sensorimotor (SMN), auditory (AN) and visual (VN) networks from resting-state functional magnetic resonance imaging data obtained from patients with schizophrenia (n = 85) and healthy individuals (n = 48). For each network, we computed its functional cohesiveness and integration and used the Kuramoto order parameter to compute metastability. We used stepwise multiple regression analyses to test these RSN features as predictors of symptom severity in patients.

Results: RSN features respectively explained 14%, 17%, 12% and 5% of the variance in positive, negative, anxious/depressive and agitation/disorganization symptoms. Lower functional integration between the DMN, CEN and SMN primarily contributed to positive symptoms. The functional properties of the SAL network were key predictors of all other symptom dimensions; specifically, lower cohesiveness of the SAL, lower integration of this network with the LAN and higher integration with the CEN respectively contributed to negative, anxious/depressive and disorganization symptoms. Increased SAL metastability was associated with negative symptoms.

Conclusions: These results confirm the primacy of the SAL network for schizophrenia and demonstrate that abnormalities in RSN connectivity and metastability are significant predictors of schizophrenia-related psychopathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317903PMC
http://dx.doi.org/10.1016/j.schres.2018.04.029DOI Listing

Publication Analysis

Top Keywords

connectivity metastability
12
rsn connectivity
8
rsn features
8
predictors symptom
8
negative anxious/depressive
8
sal network
8
metastability
6
schizophrenia
5
functional
5
rsn
5

Similar Publications

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

Multi-state metastability in neuroimaging signals reflects the brain's flexibility to transition between network configurations in response to changing environments or tasks. We modeled these dynamics with a Kuramoto network of 90 nodes oscillating at an intrinsic frequency of 40 Hz, interconnected using human brain structural connectivity strengths and delays. We simulated this model for 30 min to generate multi-state metastability.

View Article and Find Full Text PDF

Low-Temperature Glassy Behavior of SrNi(CO)(OH)·3HO with Frustrated Spin Hexamers.

Inorg Chem

December 2024

Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

In this paper, we studied the synthesis, crystal structure, magnetism, and memory effect of a spin hexamer compound SrNi(CO)(OH)·3HO. The basic magnetic unit of this compound is a ringed spin hexamer (Ni cluster). These Ni clusters are connected by an oxalate group, constituting a two-dimensional framework along the plane.

View Article and Find Full Text PDF

The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!