Purpose: Salvage high-dose-rate brachytherapy (sHDRB) is a treatment option for recurrences after prior radiation therapy. However, only approximately 50% of patients benefit, with the majority of second recurrences after salvage brachytherapy occurring distantly. Therefore, identification of characteristics that can help select patients who may benefit most from sHDRB is critical. Machine learning may be used to identify characteristics that predict outcome following sHDRB. We aimed to use machine learning to identify patient characteristics associated with biochemical failure (BF) following prostate sHDRB.
Methods And Materials: We analyzed data for 52 patients treated with sHDRB for locally recurrent prostate cancer after previous definitive radiation therapy between 1998 and 2009. Following pathologic confirmation of locally recurrent disease without evidence of metastatic disease, 36 Gy in 6 fractions was administered to the prostate and seminal vesicles. BF following sHDRB was defined using the Phoenix definition. Sixteen different clinical risk features were collected, and machine learning analysis was executed to identify subpopulations at higher risk of BF. Decision tree-based algorithms including classification and regression trees, MediBoost, and random forests were constructed.
Results: Patients were followed up for a minimum of 5 years after sHDRB. Those with a fraction of positive cores ≥0.35 and a disease-free interval <4.12 years after their initial radiation treatment experienced a higher failure rate after sHDRB of 0.75 versus 0.38 for the rest of the population.
Conclusions: Using machine learning, we have identified that patients with a fraction of positive cores ≥0.35 and a disease-free interval <4.1 years might be associated with a high risk of BF following sHDRB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2018.03.001 | DOI Listing |
Annu Rev Chem Biomol Eng
January 2025
1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.
View Article and Find Full Text PDFJ Bone Joint Surg Am
November 2024
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY.
Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.
Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.
PLoS One
January 2025
Department of Computer Science, University of Jaén, Jaén, Spain.
In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.
View Article and Find Full Text PDFPLoS One
January 2025
School of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!