Quasi-2D Ruddlesden-Popper (RP) halide perovskites have drawn intensive research interest because they possess superior ambient stability while retaining excellent device performance as compared to their pure 2D or 3D counterparts. By phase engineering strategy, quasi-2D perovskites can fall into three types-large- n 2D perovskite, 2D:3D mixed perovskite, and 3D/2D bilayer perovskite. This Perspective discusses the modulation of phase composition, hierarchical distribution, and crystal orientation in quasi-2D perovskites, aiming to uncover the correlation between morphological structure, band alignment, and charge recombination. A perspective of phase engineering in 2D RP-type perovskite materials is then given toward the concurrent stability and device efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00840 | DOI Listing |
J Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
Background: Unwarranted clinical variation presents a major challenge in contemporary healthcare, indicating potential inequalities and inefficiencies, and unrealised potential for better outcomes. Despite an increasing focus on unwarranted clinical variation, and consideration of efforts to address this challenge, evidence-based strategies which achieve this are limited. Audit and feedback of healthcare processes (process auditing) and clinician engagement are important tools which may help to reduce unwarranted clinical variation, however their application in maternity care is yet to be thoroughly explored.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China.
Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!