Platinum nanoparticles encapsulated into zeolite Y (Pt@Y catalyst) exhibit excellent catalytic selectivity in the hydrogenation of substituted nitroarenes to form the corresponding aromatic amines, even after complete conversion. With the hydrogenation of p-chloronitrobenzene as a model, the role of zeolite encapsulation toward perfect selectivity can be attributed to constraint of the substrate adsorbed on the platinum surface in an end-on conformation. This conformation results in the activation of only one adsorbed group, with little influence on the other one in the molecule. Owing to a much lower apparent activation energy of Pt@Y for the hydrogenation of a separately adsorbed nitro group than that of the adsorbed chloro group, the Pt@Y catalyst can prevent hydrodechlorination of p-chloronitrobenzene under mild conditions. Moreover, such a conformation results in a reduced adsorption energy of target p-chloroaniline on the platinum surface; thus suppressing the reactivity of hydrodechlorination of p-chloroaniline to circumvent further C-Cl bond breakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201800596 | DOI Listing |
Natl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Mussel byssi form a robust underwater adhesive system, anchoring to various surfaces in harsh marine environments. Central to byssus is foot protein type 4 (fp-4), a junction protein connecting collagenous threads to proteinaceous plaque. This study investigated an anionic plaque-binding domain of fp-4 (fp-4a) and its interactions with cationic foot proteins (fp-1, fp-5, and fp-151 as model substitutes for fp-2) and metal ions (Ca, Fe, and V).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China.
Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) is an important cause of neurological impairment and leads to considerable morbidity and mortality. The stability of the blood-brain barrier (BBB) is crucial for minimizing secondary neurological damage and improving long-term prognosis. However, the precise mechanisms and regulatory pathways that contribute to BBB dysfunction after CPR remain elusive.
View Article and Find Full Text PDFChem Sci
December 2024
Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.
View Article and Find Full Text PDFHeliyon
December 2024
Curia Wisconsin, Inc. D/B/A Siegfried Acceleration Hub, 870 Badger Circle, Grafton, WI, 53024, United States.
Primary and secondary alkyl iodides and primary alkyl bromides were quickly and conveniently converted into their corresponding alkyl chlorides via S2 halide-halide substitution. The resultant alkyl chlorides simultaneously demonstrated increased volatility and stability paired with standard headspace GC-FID methodology. The derivatization was performed on both standard and sample alike and occurred during the headspace oven equilibration phase, eliminating the extra reaction step traditionally performed during many derivatization analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!