Relationship between brain plasticity, learning and foraging performance in honey bees.

PLoS One

Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France.

Published: August 2018

Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927457PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196749PLOS

Publication Analysis

Top Keywords

learning performance
16
reversal learning
16
foraging
12
learning
9
foraging performance
8
honey bees
8
brain structure
8
foraging onset
8
greater foraging
8
foraging experience
8

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Toward structured abdominal examination training using augmented reality.

Int J Comput Assist Radiol Surg

January 2025

Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.

Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!