The Wilms tumor suppressor gene (Wt1) encodes a transcription factor involved in the development of a number of organs, but the role played by Wt1 in pancreatic development is unknown. The pancreas contains a population of pancreatic stellate cells (PSC) very important for pancreatic physiology. We described elsewhere that hepatic stellate cells originate from the WT1-expressing liver mesothelium. Thus, we checked if the origin of PSCs was similar. WT1 expression is restricted to the pancreatic mesothelium. Between embryonic day (E) 10.5 and E15.5, this mesothelium gives rise to mesenchymal cells that contribute to a major part of the PSC and other cell types including endothelial cells. Most WT1 systemic mutants show abnormal localization of the dorsal pancreas within the mesentery and intestinal malrotation by E14.0. Embryos with conditional deletion of WT1 between E9.5 and E12.5 showed normal dorsal pancreatic bud and intestine, but the number of acini in the ventral bud was reduced approximately 30% by E16.5. Proliferation of acinar cells was reduced in WT1 systemic mutants, but pancreatic differentiation was not impaired. Thus, mesothelial-derived cells constitute an important subpopulation of pancreatic mesodermal cells. WT1 expression is not essential for pancreas development, although it influences intestinal rotation and correct localization of the dorsal pancreas within the mesogastrium. Developmental Dynamics 247:924-933, 2018. © 2018 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.24636 | DOI Listing |
Nucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFUnlabelled: The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.
View Article and Find Full Text PDFFront Immunol
January 2025
Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States.
Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!