The discovery of the first non-indolyl cruciferous phytoalexins nasturlexins A and B together with cyclonasturlexin and brassinin, all chemical defenses of watercress plants (Nasturtium officinale R. Br.), revealed the co-occurrence of two parallel defense pathways, the tryptophan (Trp) pathway and the phenylalanine (Phe) pathway in crucifers. Similar to watercress, winter cress (Barbarea vulgaris R. Br.) and upland cress [B. verna (P. Mill.) Aschers] produce Phe derived phytoalexins, the nasturlexins C and D together with their counterpart sulfoxides. A detailed chemical understanding of the biosynthetic pathways of these phytoalexins facilitates their metabolic engineering. To this end, the biosynthetic pathways of cyclonasturlexin, nasturlexins A-D and corresponding sulfoxides in cress plants were investigated using isotopically labelled compounds. Except for the carbon atom of the thiomethyl groups of nasturlexins, the origin of all carbon atoms and nitrogen of nasturlexins was established to be homophenylalanine. A detailed map of the biosynthetic intermediates between phenylethyl isothiocyanates and nasturlexins A-D and sulfoxides in upland cress, winter cress and watercress is proposed. An application beyond these findings could lead to "designer crops" containing a wider range of chemical defenses that could make such crops more resistant to pests and diseases, a greatly advantageous trait.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8ob00673c | DOI Listing |
Biol Pharm Bull
January 2025
Division of Bio-Analytical Chemistry, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; Jinhua Advanced Research Institute, Jinhua 321019, China. Electronic address:
Salvianic acid A (SAA) is a catechol compound known for its diverse physiochemical functions and has significant applications in the food and pharmaceutical industries. 4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H) is a critical enzyme for SAA biosynthesis, and improving its activity towards p-hydroxyphenyllactate acid (4HPLA) is essential for highly efficient SAA production in stable biosynthetic pathways. To address this, the distal site and loops of the substrate pocket were modified to improve 4HPA3H catalytic activity towards 4HPLA using computer-aided molecular modification methods.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:
Macromolecular glycopeptides are natural products derived from various sources, distinguished by their structural diversity, multifaceted biological activities, and low toxicity. These compounds exhibit a wide range of biological functions, such as immunomodulation, antitumor effects, anti-inflammatory properties, antioxidant activity, and more. However, limited understanding of natural glycopeptides has hindered their development and practical application.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
The medicinal plant is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!