Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using the "clean" speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impairment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing. Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using an RNN is possible and might have beneficial effects when used in hearing aids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949931 | PMC |
http://dx.doi.org/10.1177/2331216518770964 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia.
This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion system(SPCS) that operates under real-time weather conditions. The primary contribution is the introduction of an uncertain model, which has not been published before, simulating the SPCS's actual functioning. The proposed robust control strategy involves two stages: first, modifying the standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using real-time measurements of temperature, solar irradiance, and wind speed.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Competence Center for Renewable Energies and Energy Efficiency, Hamburg University of Applied Sciences, Hamburg, Germany.
With the increasing height and rotor diameter of wind turbines, bat activity monitoring within the risk area becomes more challenging. This study investigates the impact of Unmanned Aerial Systems (UAS) on bat activity and explores acoustic bat detection via UAS as a new data collection method in the vicinity of wind turbines. We tested two types of UAS, a multicopter and a Lighter Than Air (LTA) UAS, to understand how they may affect acoustically recorded and analyzed bat activity level for three echolocation groups: Pipistrelloid, Myotini, and Nyctaloid.
View Article and Find Full Text PDFIntegr Zool
January 2025
Animal Behaviour Group, Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia.
Animal signals are complex, comprising multiple components influenced by ecological factors and viewing perspectives that together impact their overall effectiveness. Our study explores how these factors affect the efficacy of multi-component signals in the Qinghai toad-headed agama, Phrynocephalus vlangalii. Using 3D animations, we simulated natural environments to evaluate how tail coiling and tail lashing-two primary tail displays-vary in effectiveness from both conspecific and predator perspectives under different ecological conditions.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Health Canada, Consumer and Clinical Radiation Protection Bureau, Non-Ionizing Radiation Health Sciences Division, Ottawa, Ontario K1A 1C1, Canada.
The World Health Organization Environmental Noise Guidelines provide source-based nighttime sound level (Lnight) recommendations. For non-aircraft sources, the recommended Lnight is where the absolute prevalence of high sleep disturbance (HSD) equals 3%. The Guideline Development Group did not provide an Lnight for wind turbines due to inadequate data.
View Article and Find Full Text PDFThis study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!