Purpose: The aim of this work is to investigate the effects of immersing EBT3 radiochromic film in water and to evaluate its contribution to the total uncertainty in dose determination.
Materials And Methods: We used 3 cm × 3 cm EBT3 radiochromic films irradiated in the range of 0-70 Gy to study the impact of water immersion on the change in net optical density. These films were placed in a water container for a period of 24 h. The net optical density was measured before (0 h) and after of the immersion in water (1, 3, 6, 12, 18, and 24 h). The absorbance spectrum of the EBT3 radiochromic film was measured at 0 h and 24 h after immersion in water. The uncertainty in dose determination due to the effects of keeping the EBT3 radiochromic film submerged in water at 0, 1, and 24 h were recorded in the red, green, and blue channels.
Results: We observed an increase in the net optical density as an effect on the film due to its immersion in water. The penetration of the water at the edges of the radiochromic film was observed to be a function of time during which the film remained in the water. On the other hand, the penetration of water at the edges of the film was found to be independent of irradiation dose.
Conclusions: EBT3 radiochromic film is found more resistant to water penetration through the edges than its predecessors. However, there is evidence that suggest that liquid water damage the Nylon cover layer of the film by changing its optical properties. Therefore, it is recommended to build a new calibration curve for radiochromic films for a specific situation involving dose measurements in liquid water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978557 | PMC |
http://dx.doi.org/10.1002/acm2.12337 | DOI Listing |
Phys Med Biol
December 2024
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
This study analyzed the spectral response of EBT3, EBT4, and EBT-XD radiochromic films using absorption spectroscopy. The primary focus was on characterizing the evolution of spectral signatures across a range of absorbed doses, thereby elucidating the unique dose-dependent response profiles of each film type. Ten samples of each film type were subjected to open field irradiation within their designated dose ranges (1-20 Gy for EBT3 and EBT4, 1-50 Gy for EBT-XD).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2024
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio 6, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, 07738 Ciudad de México, México.
In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy.
View Article and Find Full Text PDFBiomed Phys Eng Express
November 2024
Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, VA, United States of America.
. We aim to characterize kinetics of radiation-induced optical density in newly released EBT4 radiochromic films exposed to clinical x-rays. Several film models and batches were evaluated for the film sensitivity, optical signal increasing with time, relative film noise, and minimum detectable limits (MDL).
View Article and Find Full Text PDFPhys Med
October 2024
Chrono-environment Laboratory, University of Franche-Comté, 4 place Tharradin, 25200 Montbéliard, France.
Purpose: Radiochromic EBT3 films are commonly used as dosimeter for clinical practice and research on radiotherapy. In principle, they are associated with a flatbed scanner to determine the optical density change, which can be correlated to the absorbed dose after calibration. Several approaches have been proposed to reduce the uncertainties during acquisition and to compensate the lighting inhomogeneities, thus improving the dose measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!