Thiosemicarbazones are chelators of transition metals such as iron or copper whose anticancer potency is intensively investigated. Although two compounds from this class have entered clinical trials, their precise mechanism of action is still unknown. Recent studies have suggested the mobilization of the iron ions from a cell, as well as the inhibition of ribonucleotide reductase, and the formation of reactive oxygen species. The complexity and vague nature of this mechanism not only impedes a more rational design of novel compounds, but also the further development of those that are highly active that are already in the preclinical phase. In the current work, a series of highly active thiosemicarbazones was studied for their antiproliferative activity Our experiments indicate that these complexes have ionophoric properties and redox activity. They appeared to be very effective generating reactive oxygen species and deregulating the antioxidative potential of a cell. Moreover, the genes that are responsible for antioxidant capacity were considerably deregulated, which led to the induction of apoptosis and cell cycle arrest. On the other hand, good intercalating properties of the studied compounds may explain their ability to cleave DNA strands and to also poison related enzymes through the formation of reactive oxygen species. These findings may help to explain the particularly high selectivity that they have over normal cells, which generally have a stronger redox equilibrium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915149 | PMC |
http://dx.doi.org/10.18632/oncotarget.24844 | DOI Listing |
JAMA Pediatr
January 2025
Department of Cardiology, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.
Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.
Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.
J Mater Chem B
January 2025
Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn't affect mature rhIAPP fibrils.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.
Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.
Appl Microbiol Biotechnol
January 2025
Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!