Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917440 | PMC |
http://dx.doi.org/10.1080/14686996.2018.1455154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!