Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System.

Mol Cell

Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. Electronic address:

Published: May 2018

Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2018.03.028DOI Listing

Publication Analysis

Top Keywords

folding
10
hsp90 breaks
8
breaks deadlock
8
protein folding
8
hsp70 hsp90
8
fold proteins
8
productive folding
8
hsp70-hsp90 cascade
8
hsp90
6
hsp70
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!