Purified human eosinophils treated for 18-24 h with IL-3 adopt a unique activated phenotype marked by increased reactivity to aggregated immunoglobulin-G (IgG). To characterize this phenotype, we quantified protein abundance and phosphorylation by multiplexed isobaric labeling combined with high-resolution mass spectrometry. Purified blood eosinophils of five individuals were treated with IL-3 or no cytokine for 20 h, and comparative data were obtained on abundance of 5385 proteins and phosphorylation at 7330 sites. The 1150 proteins that were significantly up-regulated ( q < 0.05, pairwise t test with Benjamini-Hochberg correction) by IL-3 included the IL3RA and CSF2RB subunits of the IL-3 receptor, the low-affinity receptor for IgG (FCGR2B), 96 proteins involved in protein translation, and 55 proteins involved in cytoskeleton organization. Among the 703 proteins that decreased were 78 mitochondrial proteins. Dynamic regulation of protein phosphorylation was detected at 4218 sites. These included multiple serines in CSF2RB; Y694 of STAT5, a key site of activating phosphorylation downstream of IL3RA/CSF2RB; and multiple sites in RPS6KA1, RPS6, and EIF4B, which are responsible for translational initiation. We conclude that IL-3 up-regulates overall protein synthesis and targets specific proteins for up-regulation, including its own receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984179 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.8b00057 | DOI Listing |
Cureus
November 2024
Dermatology, Imperial Dermatology, Hollywood, USA.
Isotretinoin (13-cis-retinoic acid) is a well-established systemic treatment for moderate to severe acne vulgaris, renowned for its ability to target multiple contributors to acne pathogenesis. However, its therapeutic potential extends beyond conventional acne management. This case report highlights its efficacy in treating recalcitrant pustular dermatosis, a condition that proved resistant to standard therapies and posed significant diagnostic challenges.
View Article and Find Full Text PDFCureus
November 2024
Respiratory Diseases Clinic, Hospital Regional de Alta Especialidad de la Península de Yucatan, Merida, MEX.
Patients with severe eosinophilic asthma (SEA) can benefit from biologic therapy but some subjects may present an immune-mediated side effect. These patients will not meet the treatment goals and might have an increased risk of exacerbations. Monitoring these patients by determining blood eosinophil (BE) levels could be one of the tools that may allow a follow-up to prevent a worsening of asthma or exacerbations.
View Article and Find Full Text PDFHum Gene Ther
December 2024
Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.
View Article and Find Full Text PDFJ Allergy Clin Immunol
December 2024
Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. Electronic address:
Background: Eosinophilic esophagitis (EoE) is a chronic T helper type 2 (Th2)-associated inflammatory disorder triggered by food allergens, resulting in esophageal dysfunction through edema, fibrosis, and tissue remodeling. The role of epithelial remodeling in EoE pathogenesis is critical but not fully understood.
Objective: To investigate the role of epithelial IKKβ/NFκB signaling in EoE pathogenesis using a mouse model with conditional Ikkβ knockout in esophageal epithelial cells (Ikkβ).
Transpl Int
December 2024
Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Paris, France.
While the Banff classification dichotomizes kidney allograft rejection based on the localization of the cells in the different compartments of the cortical kidney tissue [schematically interstitium for T cell mediated rejection (TCMR) and glomerular and peritubular capillaries for antibody-mediated rejection (AMR)], there is a growing evidences that subtyping the immune cells can help refine prognosis prediction and treatment tailoring, based on a better understanding of the pathophysiology of kidney allograft rejection. In the last few years, multiplex IF techniques and automatic counting systems as well as transcriptomics studies (bulk, single-cell and spatial techniques) have provided invaluable clues to further decipher the complex puzzle of rejection. In this review, we aim to better describe the inflammatory infiltrates that occur during the course of kidney transplant rejection (active AMR, chronic active AMR and acute and chronic active TCMR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!