Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis.

J Mol Neurosci

Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

Published: May 2018

Adipose-derived stem cells (ADSCs) have been demonstrated to promote cerebral vascular remodeling processes after stroke. However, the exact molecular mechanism by which ADSCs exert protective roles in ischemic stroke is still poorly understood. In this study, we identified the role of exosomal microRNA-181b-5p (181b-Exos) in regulating post-stroke angiogenesis. The results of migration assay and capillary network formation assay showed that exosomes secreted by ADSCs (ADSCs-Exos) promoted the mobility and angiogenesis of brain microvascular endothelial cells (BMECs) after oxygen-glucose deprivation (OGD). Quantitative real-time polymerase chain reaction (qRT-PCR) showed that microRNA-212-5p (miR-212-5p) and miR-181b-5p were upregulated in BMECs subjected to the brain extract of the middle cerebral artery occlusion rats. The migration distance and tube length were increased in BMECs cultured with 181b-Exos. Furthermore, we identified that transient receptor potential melastatin 7 (TRPM7) was a direct target of miR-181b-5p. TRPM7 mRNA and protein levels were declined in BMECs cultured with 181b-Exos, but not in BMECs cultured with 212-Exos. Overexpression of TRPM7 reversed the effects of 181b-Exos on migration and tube formation of BMECs. In addition, 181b-Exos upregulated the protein expression of hypoxia-inducible factor 1α and vascular endothelial cell growth factor, and downregulated the protein expression of tissue inhibitor of metalloproteinase 3. The regulatory effect of 181b-Exos was attenuated by overexpressing TRPM7. Altogether, ADSCs-Exos promote the angiogenesis of BMECs after OGD via miR-181b-5p/TRPM7 axis, suggesting that ADSCs-Exos may represent a novel therapeutic approach for stroke recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-018-1071-9DOI Listing

Publication Analysis

Top Keywords

bmecs cultured
12
exosomes secreted
8
adipose-derived stem
8
stem cells
8
angiogenesis brain
8
brain microvascular
8
microvascular endothelial
8
endothelial cells
8
oxygen-glucose deprivation
8
cultured 181b-exos
8

Similar Publications

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Lactoferrin (LF), a member of the transferrin family, is widely present in mammalian milk and other secretions, exhibiting anti-inflammatory, antibacterial, and anti-infective properties. Although the biological functions of LF have been extensively studied, there are few reports on its effects and molecular mechanisms concerning bovine mastitis caused by bacterial infection. This study used bovine mammary epithelial cells (BMECs) cultured in vitro as the research model.

View Article and Find Full Text PDF

TNFSF9 Silence Impedes Cerebral Ischemia-Reperfusion Injury via Modulating SLC3A2 Expression in Brain Microvascular Endothelial Cells.

J Mol Neurosci

January 2025

Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.

Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment.

View Article and Find Full Text PDF

Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells.

Stem Cell Rev Rep

January 2025

Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.

Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.

View Article and Find Full Text PDF

Regulation of lactate accumulation in bovine mammary epithelial cells by LPS-induced HIF-1α/MCT1 pathway.

Microb Pathog

February 2025

Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China. Electronic address:

Lactate has been increasingly recognized for its role in diseases progression, necessitating a deeper understanding of its metabolic processes and regulatory mechanisms. This study aimed to evaluate the impact of lipopolysaccharide (LPS) on lactate accumulation in bovine mammary epithelial cells (BMECs) and to elucidate the underlying regulatory mechanisms. Further optimization of LPS treatment points was achieved by assessing the content of key glycolytic enzymes-hexokinases (HK), pyruvate kinase (PK) and pyruvate dehydrogenase (PDH)-as well as the expression levels of HK2, pyruvate dehydrogenase kinase4 (PDK4) and lactate dehydrogenase (LDHA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!