Perivascular adipose tissue (PAT) is associated with vascular homeostasis; however, its causal effect on atherosclerosis currently remains undefined. Here, we investigated the effect of experimental PAT transplantation on atherosclerosis. The thoracic periaortic adipose tissue (tPAT) was dissected from 16-week-old wild-type mice and transplanted over the infrarenal aorta of 20-week-old apoE deficient (apoE) mice fed high-cholesterol diet for 3 months. Oil-red O staining after 4 weeks showed a significant 20% decrease in the atherosclerotic lesion of suprarenal aorta compared with that of sham control mice, while that of infrarenal aorta showed no difference between the two groups. TGF-β1 mRNA expression was significantly higher in grafted tPAT than donor tPAT, accompanied by a significant increase in serum TGF-β1 concentration, which was inversely correlated with the suprarenal lesion area (r = -0.63, P = 0.012). Treatment with neutralizing TGF-β antibody abrogated the anti-atherogenic effect of tPAT transplantation. Immunofluorescent analysis of grafted tPAT showed that TGF-β-positive cells were co-localized with Mac-2-positive cells and this number was significantly increased compared with donor tPAT. There was also marked increase in mRNA expression of alternatively activated macrophages-related genes. Furthermore, the percentage of eosinophils in stromal vascular fraction of donor tPAT was much higher than that in epididymal white adipose tissue, concomitant with the significantly higher protein level of IL-4. IL-4 mRNA expression levels in grafted tPAT were increased in a time-dependent manner after tPAT transplantation. Our findings show that tPAT transplantation inhibits atherosclerosis development by exerting TGF-β1-mediated anti-inflammatory response, which may involve alternatively activated macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.04.196DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
mrna expression
12
grafted tpat
12
donor tpat
12
tpat transplantation
12
tpat
10
periaortic adipose
8
inhibits atherosclerosis
8
apoe mice
8
tgf-β1-mediated anti-inflammatory
8

Similar Publications

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!