The hyporheic zone (HZ) is often considered to efficiently remove polar trace organic compounds (TrOCs) from lotic systems, mitigating potential adverse effects of TrOCs on ecosystem functioning and drinking water production. Predicting the fate of TrOCs in the hyporheic zone (HZ) is difficult as the in-situ removal rate constants are not known and the biogeochemical factors as well as hydrological conditions controlling the removal efficiency are not fully understood. To determine the in-situ removal efficiency of the HZ for a variety of TrOCs as a function of the biogeochemical milieu, we conducted a field study in an urban river near Berlin, Germany. Subsurface flow was studied by time series of temperature depth profiles and the biogeochemical milieu of the HZ by concentration depth profiles. These results, in conjunction with a 1D advection-dispersion transport model, were used to calculate first-order removal rate constants of several polar TrOCs in the HZ. For the majority of TrOCs investigated, removal rate constants were strongly dependent on redox conditions, with significantly higher removal rates observed under predominantly suboxic (i.e. denitrifying) compared to anoxic (i.e. Fe and Mn reducing) conditions. Compared to previous studies on the fate of TrOCs in saturated sediments, half-lives within oxic/suboxic sections of the HZ were relatively low, attributable to the site-specific characteristics of the HZ in a stream dominated by wastewater treatment plant effluent. For nine out of thirteen investigated TrOCs, concentrations decreased significantly in the HZ with relative removal percentages ranging from 32% for primidone to 77% for gabapentin. For many TrOCs, removal efficiency decreased drastically as redox conditions became anoxic. For the majority of compounds investigated here, the HZ indeed acts as an efficient bioreactor that is capable of removing TrOCs along relatively short flow paths. Depending on the TrOC, removal capacity may be enhanced by either increasing the magnitude of groundwater-surface exchange fluxes, by increasing the total residence time in the HZ or the exposure time to suboxic zones, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.04.040 | DOI Listing |
Chemosphere
January 2025
HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34090, Montpellier, France.
Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.
View Article and Find Full Text PDFWater Res
December 2024
Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:
Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.
View Article and Find Full Text PDFThe One Health concept, although formulated two decades ago, remains challenging to implement. It necessitates the integration of numerous scientific disciplines, diverse techniques and various professional expertise. Furthermore, it often requires the collaboration of different institutions, encompassing both scientific and administrative entities.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand.
In-channel water treatment systems remove excess nutrients through biological, chemical, and physical processes associated with the hyporheic zone. However, the impact of surface and groundwater interactions on these treatment processes is poorly understood. This research aims to assess the influence of varying groundwater conditions (neutral, drainage water, and groundwater seepage) and different bed sediment hydraulic conductivities on nitrogen and phosphorus dynamics in in-channel treatment systems.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada.
Groundwater transport of chloride (Cl) containing road salt deicers is an important contributor to salinization of fresh surface waters in temperate climates. While mass loading of salt to streams via groundwater has received greater recognition lately, only a few studies have demonstrated the unique risk posed by the direct discharge of salt-laden groundwater to aquatic life residing in the benthic zone (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!