Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: A redox proteomic investigation.

Aquat Toxicol

Proteomic Research Group, School of Biochemistry and Cell Biology, University College Cork, Ireland; Dept of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates. Electronic address:

Published: July 2018

Oxidative stress is often implicated in nanoparticle toxicity. Several studies have highlighted the role of internalization routes in determining nanotoxicity. Here, we investigate how two endocytotic mechanisms (clathrin- and caveolae-mediated) impact on redox balance in gill and digestive gland of the mussel, Mytilus galloprovincialis. Animals were exposed (for 3, 6 and 12 h) to two sizes of silver nanoparticles (AgNP: <50 nm and <100 nm) prior to and after blockade of two endocytic pathways (amantadine blocks clathrin-mediated endocytosis while nystatin blocks caveolae-mediated endocytosis). Redox-proteomic tools were used to determine effects. Our results demonstrate the ability of both sizes of AgNP (<50 and <100 nm) to cause protein thiol oxidation and/or protein carbonylation. However, blockade of endocytotic routes mitigated AgNP toxicity. Differential ROS-related toxicity of AgNP to mussel tissues seemed to be linked to tissue-specific mode of action requirements. Cell uptake mechanism strongly influences toxicity of AgNPs in this filter-feeder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2018.04.013DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
mytilus galloprovincialis
8
role endocytotic
4
endocytotic uptake
4
uptake routes
4
routes impacting
4
impacting ros-related
4
ros-related toxicity
4
toxicity silver
4
nanoparticles mytilus
4

Similar Publications

In the published article "Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18 (2007) 055605", the figure caption of Figure 8 has an error in immersion time, and the correct caption is given in this Corrigendum.

View Article and Find Full Text PDF

Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.

View Article and Find Full Text PDF

Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.

View Article and Find Full Text PDF

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas.

Int J Nanomedicine

January 2025

Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Nanoparticles in gynecologic cancers: a bibliometric and visualization analysis.

Front Oncol

January 2025

Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.

Background: Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!