There is a lack of information about the transgenerational effects of titanium dioxide nanoparticles (nano-TiO) in plants. This study aimed to evaluate the impacts of successive exposure of nano-TiO with different surface properties to basil (Ocimum basilicum). Seeds from plants exposed or re-exposed to pristine, hydrophobic, or hydrophilic nano-TiO were cultivated for 65 days in soil unamended or amended with 750 mg·kg of the respective particles. Plant growth, concentration of titanium and essential elements, as well as content of carbohydrates and chlorophyll were evaluated. There were no differences on Ti concentration in roots of plants sequentially exposed to pristine or hydrophobic nano-TiO, or in roots of plants exposed to the corresponding particle, only in the second cycle. However, sequential exposure to hydrophilic particles resulted in 65.2% less Ti in roots, compared to roots of plants exposed the same particles, only in the second cycle. The Ti concentrations in shoots were similar in all treatments. On the other hand, pristine and hydrophilic particles reduced Mg in root by 115% and 81%, respectively, while pristine and hydrophobic particles reduced Ni in shoot by 84% and 75%, respectively, compared to unexposed plants in both cycles. Sequential exposure to pristine nano-TiO increased stomatal conductance (214%, p ≤ 0.10), compared to plants that were never exposed. Hydrophobic and hydrophilic nano-TiO reduced chlorophyll b (52%) and total chlorophyll (30%) but increased total sugar (186%) and reducing sugar (145%), compared to unexposed plants in both cycles. Sequential exposure to hydrophobic or hydrophilic nano-TiO resulted in more adverse effects on photosynthesis but in positive effects on plant growth, compared to pristine nano-TiO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.04.263 | DOI Listing |
Hortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFHeliyon
January 2025
CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126, Catania, Italy.
Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China. Electronic address:
As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!