Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors.

Bioorg Med Chem

Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: July 2018

Glutamyl cyclase (QC) is a promising therapeutic target because of its involvement in the pathogenesis of Alzheimer's disease. In this study, we developed novel QC inhibitors that contain 3-aminoalkyloxy-4-methoxyphenyl and 4-aminoalkyloxyphenyl groups to replace the previously developed pharmacophore. Several potent inhibitors were identified, showing IC values in a low nanomolar range, and were further studied for in vitro toxicity and in vivo activity. Among these, inhibitors 51 and 53 displayed the most potent Aβ-lowering effects in in vivo acute model with reasonable BBB penetration, without showing cytotoxicity and hERG inhibition. The molecular modeling analysis of 53 indicated that the salt bridge interaction and the hydrogen bonding in the active site provided a high potency. Given the potent activity and favorable BBB penetration with low cytotoxicity, we believe that compound 53 may serve as a potential candidate for anti-Alzheimer's agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2018.04.040DOI Listing

Publication Analysis

Top Keywords

bbb penetration
8
structure-activity relationship
4
relationship investigation
4
investigation phe-arg
4
phe-arg mimetic
4
mimetic region
4
region human
4
human glutaminyl
4
glutaminyl cyclase
4
inhibitors
4

Similar Publications

The blood-brain barrier, essential for protecting the central nervous system, also restricts drug delivery to this region. Thus, delivering drugs across the blood-brain barrier is an active research area in immunology, oncology, and neurology; moreover, novel methods are urgently needed to expand therapeutic options for central nervous system pathologies. While previous strategies have focused on small molecules that modulate blood-brain barrier permeability or penetrate the barrier, there is an increased focus on biomedical devices-external or implanted-for improving drug delivery.

View Article and Find Full Text PDF

Advancing brain immunotherapy through functional nanomaterials.

Drug Deliv Transl Res

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.

Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.

View Article and Find Full Text PDF

Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration.

Int J Pharm

January 2025

Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada. Electronic address:

The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy.

View Article and Find Full Text PDF

Background: Although novel treatments for Alzheimer’s disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long‐term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood‐brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.

View Article and Find Full Text PDF

Hyperphosphorylated Tau Targeting Human Serum Albumin Fusion Protein as Therapeutics for Alzheimer’s Disease.

Alzheimers Dement

December 2024

L & J Bio, Co., Ltd, Seoul, Songpa‐Gu, Korea, Republic of (South)

Background: Neurofibrillary tangles (NFTs), along with amyloid beta plaque, are neuropathological aggregates of Alzheimer’s Disease (AD). Hyperphosphorylated tau is responsible for the NFTs formation and further neurodegeneration in AD. The hippocampal region and the entorhinal cortex (EC) have been a major focus of AD research because the deposits of hyperphosphorylated tau protein and NFT in these regions are correlated with memory deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!