Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.

Ultrason Sonochem

Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:

Published: July 2018

Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L and the maximum adsorption capacity of 5 mg.g was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO, NO, SO, Cl) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L, the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2018.03.002DOI Listing

Publication Analysis

Top Keywords

activated carbon
8
adsorption
8
initial fluoride
8
fluoride concentration
8
fluoride
7
water
5
acoustic cavitation
4
cavitation induced
4
induced synthesis
4
synthesis zirconium
4

Similar Publications

[Investigation of Virulence Genes in Campylobacter Species Isolated from Patients with Acute Diarrhea].

Mikrobiyol Bul

January 2025

Selçuk Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Konya.

Akut gastroenterit dünya genelinde en yaygın enfeksiyon hastalıklarından biridir. Bu hastalıklar gelişmekte olan ülkelerde çocuk ölümlerine ve ciddi ekonomik kayıplara neden olmuştur. Hastalık genellikle yaygın diyare şeklinde kendini gösterse de bazı olgularda şiddetli enfeksiyon belirtilerine, hatta ölümlere neden olmuştur.

View Article and Find Full Text PDF

What is left in miombo woodlands? Rarity and commonness of woody species, commercial timber species, and lawful harvestable diameter classes.

Heliyon

January 2025

Departamento de Engenharia Florestal, Universidade Eduardo Mondlane, Av. Julius Nyerere Número 3453, Campus Universitário Principal, Edifício Número 1, 257, Maputo, Mozambique.

Mozambican miombo woodlands (MWs) have been experiencing severe anthropogenic threats, recognized to have an impact on plant species distribution, occurrence, diversity, and rarity patterns. Based on 3725 0.1 ha plots distributed across the country's MWs, this study aimed to assess the species rarity and commonness, protection status, and availability of commercial timber in MWs under varied environmental conditions.

View Article and Find Full Text PDF

Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with PWO: A spectroscopic study to reveal adsorption mechanism.

Heliyon

January 2025

Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.

Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.

View Article and Find Full Text PDF

While many chemicals are regulated and routinely monitored in drinking water, they represent just a portion of all contaminants that may be present. Typical drinking water analyses involve sampling one liter or less of water, which could lead to trace level contaminants going undetected. In this study, a method was developed for using point-of-use activated carbon block drinking water filters as sampling devices.

View Article and Find Full Text PDF

Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!